

Generative Model Zoo (part III)

Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2025

many slides from Robin Rombach, Karsten Kreis, Ruiqi Gao, Arash Vahdat, Phillip Isola, Richard Zhang, Alyosha Efros, etc.

Variational Auto-encoder

Variational Autoencoders (VAEs)

$$\begin{array}{lll} \sum \max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}} [\log p_{\theta}(x)] & \text{Multi-variate} \\ & \downarrow \\ & \geq \max_{\theta, \psi} \mathbb{E}_{x_i \sim p_{\text{data}}} [\mathbb{E}_{q_{\psi}(z|x_i)}[p_{\theta}(x|z)] - \text{KL}(q_{\psi}(z|x_i)| \\ & \uparrow & \uparrow \\ & \text{reconstruction loss} & \text{KLD loss} \\ & ||x - \hat{x}||_2 & \text{KLD}(\mathcal{N}(E_{\psi}^{\mu})) \\ \end{array}$$

ELBO: Evidenc Lower Bound

 \hat{x}

- Gaussian
- |p(z))]

SS $\mathcal{L}(x), E_{\psi}^{\sigma}(x)) \mid \mathcal{N}(0, I))$

[Kingma and Welling, 2014]

Autoencoders (AEs)

$$\max_{\theta,\psi} \mathbb{E}_{x_i \sim p_{\text{data}}} \begin{bmatrix} \mathbb{E}_{q_{\psi}(z|x_i)} [p_{\theta}(x|z)] \\ \uparrow \end{bmatrix}$$

$$\text{reconstruction loss} \\ ||x - \hat{x}||_2$$

generator $\hat{x} = G^{\mu}_{\theta}(z)$

 \hat{x}

[Hinton and Salakhutdinov, Science 2006]

Denoising Autoencoders (AEs)

$$\max_{\theta,\psi} \mathbb{E}_{x_i \sim p_{data}} \begin{bmatrix} \mathbb{E}_{q_{\psi}(z|x_i)} [p_{\theta}(x|z)] \\ \uparrow \\ \text{reconstruction loss} \\ \text{corrupt input} \end{bmatrix}$$

[Hinton and Salakhutdinov, Science 2006]

 \hat{x}

Denoising vs. Compression

Diffusion Models

Denoising Autoencoders (AEs)

$$\max_{\theta,\psi} \mathbb{E}_{x_i \sim p_{data}} \begin{bmatrix} \mathbb{E}_{q_{\psi}(z|x_i)} [p_{\theta}(x|z)] \\ \uparrow \\ \text{reconstruction loss} \\ \text{corrupt input} \end{bmatrix}$$

[Hinton and Salakhutdinov, Science 2006]

 \hat{x}

Denoising vs. Compression

Diffusion Models

Animations from https://yang-song.github.io/blog/2021/score/

"destroy" the data by gradually adding small amounts of gaussian noise

- "create" data by gradually denoising a noisy code from a stationary distribution

Diffusion Model Overview

*slides motivated from https://cvpr2022-tutorial-diffusion-models.github.io

Diffusion Model Training

Noise

Diffusion Model Training

Noise

*slides motivated from https://cvpr2022-tutorial-diffusion-models.github.io

Denoising Diffusion Models Learning to generate by denoising

Denoising diffusion models consist of two processes:

- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015 Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020 Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Noise

Forward Diffusion Process

The formal definition of the forward process in T steps:

Slide credit: Karsten Kreis et al.

Noise

Diffusion Kernel

Forward diffusion process (fixed)

- (Diffusion Kernel)

• Reparameterization Trick $\alpha_t = 1 - \beta_t$ $\bar{\alpha}_t = \prod \alpha_i$

• Reparameterization Trick $\alpha_t = 1 - \beta_t$ $\bar{\alpha}_t = \prod \alpha_i$

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1}$$

• Reparameterization Trick $\alpha_t = 1 - \beta_t$ $\bar{\alpha}_t = \prod \alpha_i$

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \boldsymbol{\epsilon}_{t-1}$$
$$= \sqrt{\alpha_{t}} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \bar{\boldsymbol{\epsilon}}_{t-2}$$

• Reparameterization Trick $\alpha_t = 1 - \beta_t$ $\bar{\alpha}_t = \prod \alpha_i$

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \boldsymbol{\epsilon}_{t-1}$$
$$= \sqrt{\alpha_{t}} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \bar{\boldsymbol{\epsilon}}_{t-2}$$
$$= \dots$$
$$= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}$$

• Reparameterization Trick $\alpha_t = 1 - \beta_t$ $\bar{\alpha}_t = \prod \alpha_i$

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \boldsymbol{\epsilon}_{t-1}$$
$$= \sqrt{\alpha_{t}} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \bar{\boldsymbol{\epsilon}}_{t-2}$$
$$= \dots$$
$$= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}$$
$$q(\mathbf{x}_{t} | \mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I})$$

Direct sampling from $0 \rightarrow t$

Diffusion Kernel

Forward diffusion process (fixed)

- (Diffusion Kernel)

Summary Training and Sample Generation

They propose to represent the mean of the denoising model using a *noise-prediction* network:

$$\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \,\epsilon_{\theta}(\mathbf{x}_t, t) \right)$$

$$\begin{array}{l} \mathbf{J}, \mathbf{I} \\ \dots, 1 \ \mathbf{do} \\ \mathbf{J} \\ \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z} \end{array}$$

What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel $q(\mathbf{x}_t|\mathbf{x}_0)$ but what about $q(\mathbf{x}_t)$?

We can sample $\mathbf{x}_t \sim q(\mathbf{x}_t)$ by first sampling $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ and then sampling $\mathbf{x}_t \sim q(\mathbf{x}_t | \mathbf{x}_0)$

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Can we approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$? Yes, we can use a Normal distribution if β_t is small in each forward diffusion step.

Diffused Data Distributions

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Slide credit: Karsten Kreis et al.

Noise

Learning Denoising Model Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{\theta}(\mathbf{x}_0)\right] \le \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\right] =: L$$

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

$$L = \mathbb{E}_q \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) | | p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) | | p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1))}_{L_0} \right]$$

where $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ is the tractable posterior distribution:

Learning Denoising Model Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{\theta}(\mathbf{x}_0)\right] \le \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\right] =: L$$

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

$$L = \mathbb{E}_{q} \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0})||p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}))}_{L_{0}} \right]$$

where $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ is the tractable posterior distribution:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}),$$

where $\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) := \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{1-\bar{\beta}_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t} \mathbf{x}_t \text{ and } \tilde{\beta}_t := \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t$

$$_{-1}|\mathbf{x}_t,\mathbf{x}_0) = q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0) rac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

Parameterizing the Denoising Model

Since both $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ and $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ are Normal distributions, the KL divergence has a simple form:

$$L_{t-1} = D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)) = \mathbb{E}_q\left[\frac{1}{2\sigma_t^2}||\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_t, \mathbf{x}_t)||\mathbf{x}_t||$$

$$KL(p,q) = -\int p(x)\log q(x)dx + \int p(x)\log p(x)dx$$
$$= \frac{1}{2}\log(2\pi\sigma_2^2) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}(1 + \log q)^2)$$
$$= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2}.$$

 $\mathbf{x}_0) - \mu_{\theta}(\mathbf{x}_t, t) ||^2 \Big] + C$

 $\log 2\pi \sigma_1^2$)

Parameterizing the Denoising Model

Since both $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ and $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ are Normal distributions, the KL divergence has a simple form:

$$L_{t-1} = D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)) = \mathbb{E}_q\left[\frac{1}{2\sigma_t^2}||\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \mu_{\theta}(\mathbf{x}_t, t)||^2\right] + C$$

Recall that $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \epsilon$. <u>Ho et al. NeurIPS 2020</u> observe that:

$$\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right)$$

They propose to represent the mean of the denoising model using a *noise-prediction* network:

$$\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right)$$

With this parameterization

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t)(1 - \bar{\alpha}_t)} ||\epsilon - \epsilon_\theta (\underbrace{\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t})||^2 \right] + C$$

Training Objective Weighting Trading likelihood for perceptual quality

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t)(1 - \bar{\alpha}_t)} ||\epsilon - \epsilon_\theta (\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t)||^2 \right]$$

$$\underbrace{\lambda_t}$$

The time dependent λ_t ensures that the training objective is weighted properly for the maximum data likelihood training. However, this weight is often very large for small t's.

<u>Ho et al. NeurIPS 2020</u> observe that simply setting $\lambda_t = 1$ improves sample quality. So, they propose to use:

$$L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)||^2 \right]$$
$$\mathbf{x}_t$$

For more advanced weighting see Choi et al., Perception Prioritized Training of Diffusion Models, CVPR 2022.

Summary Training and Sample Generation

They propose to represent the mean of the denoising model using a *noise-prediction* network:

$$\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \,\epsilon_{\theta}(\mathbf{x}_t, t) \right)$$

$$\begin{array}{l} \mathbf{J}, \mathbf{I} \\ \dots, 1 \ \mathbf{do} \\ \mathbf{J} \\ \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z} \end{array}$$

Implementation Considerations

Noise Schedule

Credit: https://learnopencv.com/denoising-diffusion-probabilistic-models/

31

Implementation Considerations

Noise Schedule

Credit: https://learnopencv.com/denoising-diffusion-probabilistic-models/

Implementation Considerations

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t,t)$

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization layers. (see <u>Dharivwal and Nichol NeurIPS 2021</u>)

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

- The encoder is fixed
- The latent variables have the same dimension as the data
- The denoising model is shared across different timestep
- The model is trained with some reweighting of the variational bound.

